p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.78C23, (C2×C4)⋊1Q8, (C2×C4).15D4, C2.4(C4⋊Q8), C2.7C22≀C2, C22.71(C2×D4), C2.7(C22⋊Q8), (C22×Q8).2C2, C22.21(C2×Q8), C22.38(C4○D4), C2.C42.8C2, (C22×C4).27C22, (C2×C4⋊C4).9C2, SmallGroup(64,76)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.78C23
G = < a,b,c,d,e,f | a2=b2=c2=1, d2=e2=f2=a, ab=ba, ac=ca, ede-1=ad=da, ae=ea, af=fa, bc=cb, fdf-1=bd=db, be=eb, bf=fb, cd=dc, fef-1=ce=ec, cf=fc >
Subgroups: 141 in 91 conjugacy classes, 43 normal (7 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2.C42, C2×C4⋊C4, C22×Q8, C23.78C23
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C22≀C2, C22⋊Q8, C4⋊Q8, C23.78C23
Character table of C23.78C23
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | symplectic lifted from Q8, Schur index 2 |
ρ16 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ17 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | symplectic lifted from Q8, Schur index 2 |
ρ18 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ19 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ20 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ21 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 41)(2 42)(3 43)(4 44)(5 20)(6 17)(7 18)(8 19)(9 57)(10 58)(11 59)(12 60)(13 25)(14 26)(15 27)(16 28)(21 34)(22 35)(23 36)(24 33)(29 45)(30 46)(31 47)(32 48)(37 56)(38 53)(39 54)(40 55)(49 61)(50 62)(51 63)(52 64)
(1 11)(2 12)(3 9)(4 10)(5 50)(6 51)(7 52)(8 49)(13 31)(14 32)(15 29)(16 30)(17 63)(18 64)(19 61)(20 62)(21 40)(22 37)(23 38)(24 39)(25 47)(26 48)(27 45)(28 46)(33 54)(34 55)(35 56)(36 53)(41 59)(42 60)(43 57)(44 58)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 63 3 61)(2 62 4 64)(5 58 7 60)(6 57 8 59)(9 19 11 17)(10 18 12 20)(13 23 15 21)(14 22 16 24)(25 36 27 34)(26 35 28 33)(29 40 31 38)(30 39 32 37)(41 51 43 49)(42 50 44 52)(45 55 47 53)(46 54 48 56)
(1 27 3 25)(2 16 4 14)(5 33 7 35)(6 21 8 23)(9 47 11 45)(10 32 12 30)(13 41 15 43)(17 34 19 36)(18 22 20 24)(26 42 28 44)(29 57 31 59)(37 62 39 64)(38 51 40 49)(46 58 48 60)(50 54 52 56)(53 63 55 61)
G:=sub<Sym(64)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,41)(2,42)(3,43)(4,44)(5,20)(6,17)(7,18)(8,19)(9,57)(10,58)(11,59)(12,60)(13,25)(14,26)(15,27)(16,28)(21,34)(22,35)(23,36)(24,33)(29,45)(30,46)(31,47)(32,48)(37,56)(38,53)(39,54)(40,55)(49,61)(50,62)(51,63)(52,64), (1,11)(2,12)(3,9)(4,10)(5,50)(6,51)(7,52)(8,49)(13,31)(14,32)(15,29)(16,30)(17,63)(18,64)(19,61)(20,62)(21,40)(22,37)(23,38)(24,39)(25,47)(26,48)(27,45)(28,46)(33,54)(34,55)(35,56)(36,53)(41,59)(42,60)(43,57)(44,58), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,63,3,61)(2,62,4,64)(5,58,7,60)(6,57,8,59)(9,19,11,17)(10,18,12,20)(13,23,15,21)(14,22,16,24)(25,36,27,34)(26,35,28,33)(29,40,31,38)(30,39,32,37)(41,51,43,49)(42,50,44,52)(45,55,47,53)(46,54,48,56), (1,27,3,25)(2,16,4,14)(5,33,7,35)(6,21,8,23)(9,47,11,45)(10,32,12,30)(13,41,15,43)(17,34,19,36)(18,22,20,24)(26,42,28,44)(29,57,31,59)(37,62,39,64)(38,51,40,49)(46,58,48,60)(50,54,52,56)(53,63,55,61)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,41)(2,42)(3,43)(4,44)(5,20)(6,17)(7,18)(8,19)(9,57)(10,58)(11,59)(12,60)(13,25)(14,26)(15,27)(16,28)(21,34)(22,35)(23,36)(24,33)(29,45)(30,46)(31,47)(32,48)(37,56)(38,53)(39,54)(40,55)(49,61)(50,62)(51,63)(52,64), (1,11)(2,12)(3,9)(4,10)(5,50)(6,51)(7,52)(8,49)(13,31)(14,32)(15,29)(16,30)(17,63)(18,64)(19,61)(20,62)(21,40)(22,37)(23,38)(24,39)(25,47)(26,48)(27,45)(28,46)(33,54)(34,55)(35,56)(36,53)(41,59)(42,60)(43,57)(44,58), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,63,3,61)(2,62,4,64)(5,58,7,60)(6,57,8,59)(9,19,11,17)(10,18,12,20)(13,23,15,21)(14,22,16,24)(25,36,27,34)(26,35,28,33)(29,40,31,38)(30,39,32,37)(41,51,43,49)(42,50,44,52)(45,55,47,53)(46,54,48,56), (1,27,3,25)(2,16,4,14)(5,33,7,35)(6,21,8,23)(9,47,11,45)(10,32,12,30)(13,41,15,43)(17,34,19,36)(18,22,20,24)(26,42,28,44)(29,57,31,59)(37,62,39,64)(38,51,40,49)(46,58,48,60)(50,54,52,56)(53,63,55,61) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,41),(2,42),(3,43),(4,44),(5,20),(6,17),(7,18),(8,19),(9,57),(10,58),(11,59),(12,60),(13,25),(14,26),(15,27),(16,28),(21,34),(22,35),(23,36),(24,33),(29,45),(30,46),(31,47),(32,48),(37,56),(38,53),(39,54),(40,55),(49,61),(50,62),(51,63),(52,64)], [(1,11),(2,12),(3,9),(4,10),(5,50),(6,51),(7,52),(8,49),(13,31),(14,32),(15,29),(16,30),(17,63),(18,64),(19,61),(20,62),(21,40),(22,37),(23,38),(24,39),(25,47),(26,48),(27,45),(28,46),(33,54),(34,55),(35,56),(36,53),(41,59),(42,60),(43,57),(44,58)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,63,3,61),(2,62,4,64),(5,58,7,60),(6,57,8,59),(9,19,11,17),(10,18,12,20),(13,23,15,21),(14,22,16,24),(25,36,27,34),(26,35,28,33),(29,40,31,38),(30,39,32,37),(41,51,43,49),(42,50,44,52),(45,55,47,53),(46,54,48,56)], [(1,27,3,25),(2,16,4,14),(5,33,7,35),(6,21,8,23),(9,47,11,45),(10,32,12,30),(13,41,15,43),(17,34,19,36),(18,22,20,24),(26,42,28,44),(29,57,31,59),(37,62,39,64),(38,51,40,49),(46,58,48,60),(50,54,52,56),(53,63,55,61)]])
C23.78C23 is a maximal subgroup of
C2.7C2≀C4 C4⋊C4.6D4 Q8⋊D4⋊C2 (C2×C4)⋊Q16 C42.162D4 C42⋊5Q8 C24.243C23 C24.262C23 C24.567C23 C24.568C23 C23.349C24 C23.351C24 C24.282C23 C23.362C24 C24.285C23 C23.369C24 C23.374C24 C23.420C24 C24.311C23 C23.449C24 C42⋊6Q8 C42⋊7Q8 C23.455C24 C23.456C24 C24.583C23 C42.176D4 C24.338C23 C42.179D4 C23.483C24 C42.181D4 C23.486C24 C23.488C24 C42.183D4 C42.184D4 C42⋊8Q8 C42⋊26D4 C42⋊9Q8 C23.514C24 C23.527C24 C42.187D4 C42.189D4 C42.191D4 C42.192D4 C24.374C23 C23.550C24 C23.559C24 C42⋊10Q8 C42⋊32D4 C24.378C23 C24.379C23 C42⋊11Q8 C23.572C24 C23.574C24 C24.385C23 C23.580C24 C23.583C24 C24.393C23 C23.589C24 C23.590C24 C23.592C24 C24.405C23 C23.600C24 C24.408C23 C23.613C24 C23.615C24 C23.617C24 C23.620C24 C24.418C23 C24.421C23 C23.634C24 C23.637C24 C24.428C23 C23.645C24 C23.655C24 C23.658C24 C23.659C24 C23.662C24 C23.663C24 C23.674C24 C23.675C24 C24.450C23 C23.685C24 C23.688C24 C23.689C24 C23.692C24 C23.699C24 C23.705C24 C23.706C24 C23.711C24 C23.714C24 C24.462C23 C42.199D4 C42.200D4 C23.730C24 C23.731C24 C23.732C24 C23.733C24 C23.735C24 C23.738C24 C23.741C24 C42⋊12Q8 C42⋊13Q8 (C22×C4).A4
C2p.C22≀C2: C23.288C24 C23.309C24 C23.334C24 C24.361C23 (C2×C4)⋊Dic6 (C2×Dic3)⋊Q8 C22.52(S3×Q8) (C2×Dic5)⋊Q8 ...
C23.78C23 is a maximal quotient of
C24.631C23 C24.634C23 C24.636C23 C24.182C23
(C2×C4p)⋊Q8: C4⋊C4⋊Q8 (C2×C8)⋊Q8 (C2×C4)⋊Dic6 (C2×Dic3)⋊Q8 (C2×Dic5)⋊Q8 (C2×C4)⋊Dic10 (C2×Dic7)⋊Q8 (C2×C4)⋊Dic14 ...
C2p.(C4⋊Q8): C2.(C8⋊Q8) M4(2)⋊Q8 C42⋊3Q8 C22.52(S3×Q8) C10.C22≀C2 C14.C22≀C2 ...
Matrix representation of C23.78C23 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 1 | 3 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 4 |
0 | 0 | 0 | 0 | 2 | 1 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,2,1,0,0,0,0,0,3],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,2,0,0,0,0,4,1],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,2] >;
C23.78C23 in GAP, Magma, Sage, TeX
C_2^3._{78}C_2^3
% in TeX
G:=Group("C2^3.78C2^3");
// GroupNames label
G:=SmallGroup(64,76);
// by ID
G=gap.SmallGroup(64,76);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,2,48,121,55,362,332,50]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=1,d^2=e^2=f^2=a,a*b=b*a,a*c=c*a,e*d*e^-1=a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c>;
// generators/relations
Export